
AUSERA: Automated Security Vulnerability Detection for
Android Apps

Sen Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Yuxin Zhang
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Lingling Fan
College of Cyber Science,

Nankai University
Tianjin, China

Jiaming Li
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Yang Liu
Nanyang Technological University

Singapore, Singapore

ABSTRACT
To reduce the attack surface from app source code, massive tools fo-
cus on detecting security vulnerabilities in Android apps. However,
some obvious weaknesses have been highlighted in the previous
studies. For example, (1) most of the available tools such as An-
droBugs, MobSF, Qark, and Super use pattern-based methods to
detect security vulnerabilities. Although they are effective in detect-
ing some types of vulnerabilities, a large number of false positives
would be introduced, which inevitably increases the patching over-
head for app developers. (2) Similarly, static taint analysis tools such
as FlowDroid and IccTA present hundreds of vulnerability candi-
dates of data leakage instead of confirmed vulnerabilities. (3) Last
but not least, a relatively complete vulnerability taxonomy is miss-
ing, which would introduce a lot of false negatives. In this paper,
based on our prior knowledge in this research domain, we empiri-
cally propose a vulnerability taxonomy as the baseline and then ex-
tend AUSERA by augmenting the detection capability to 50 security
vulnerability types. Meanwhile, a new benchmark dataset includ-
ing all these 50 vulnerability types is constructed to demonstrate
the effectiveness of AUSERA. The tool and datasets are available
at https://github.com/tjusenchen/AUSERA and the demonstration
video can be found at https://youtu.be/UCiGwVaFPpY.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Android Apps, Security Vulnerability, Vulnerability Detection
ACM Reference Format:
Sen Chen, Yuxin Zhang, Lingling Fan, Jiaming Li, and Yang Liu. 2022.
AUSERA: Automated Security Vulnerability Detection for Android Apps. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559524

37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3551349.3559524

1 INTRODUCTION
Nowadays, with the rapid development of smartphones, more and
more Android applications (apps) are being developed for different
daily tasks, such as shopping, reading, and banking [14, 15]. Actu-
ally, Google Play Store contains more than 3 million Android apps
to gain mobile users. Consequently, with the growth of Android
apps and their users, security and privacy concerns are increasingly
becoming the focus of great concern to various stakeholders [16, 17].
For example, more and more users store sensitive data via Android
apps, including personal data and financial transfer data. Attack-
ers attempt to exploit app vulnerabilities in order to gain financial
gains or sensitive data from Android users, which is one of the
most severe security threats in the app ecosystem. Security risk
assessment of apps is not only of great significance to Android
users but also of significance to guiding app developers during
the development process. For example, as shown in Listing 1, in a
popular banking app [16, 17] from Google Play, users are asked to
register with their personal identity information (e.g., first name,
last name, password, and address), which will be sent (in plain text)
via SMS to authenticate the user. Unexpectedly, such registration
data is also stored in the SMS outbox, attackers with permission to
read SMS can easily intercept the sensitive data and impersonate
that user to manipulate her legitimate banking account.

Actually, app security vulnerabilities with domain-specific char-
acteristics are different from Android Operating System (OS) vul-
nerabilities. Vulnerabilities in Android OS are mainly thrown from
Linux kernel or architecture design, while the main root cause
of app vulnerabilities is due to the improper implementation in
Java/Kotlin implementation code, C/C++ native code (.so files),
and third-party libraries [19, 20]. Although it is an urgent need
to provide an automated security risk assessment system for An-
droid apps, there lacks a comprehensive solution to do this task
based on the existing static security analysis tools, such as An-
droBugs [1],MobSF [10], Qark [4], Super [5], FlowDroid [13], Ic-
cTA [18], JAADAS [3], and CogniCrypt. For example, (1) some
existing tools only rely on the pattern-based method to scan the

https://orcid.org/0000-0001-9477-4100
https://github.com/tjusenchen/AUSERA
https://youtu.be/UCiGwVaFPpY
https://doi.org/10.1145/3551349.3559524
https://doi.org/10.1145/3551349.3559524
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3559524&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen et al.

app code, which introduces a lot of false positives and is imprecise.
Besides, they are not able to identify security vulnerabilities related
to sensitive data in Android apps such as SMS data leakage and
SharedPreference data leakage. (2) Although the static taint analy-
sis tools such as FlowDroid [13] and IccTA [18] can alleviate the
false positive problem to some extent, they also output hundreds of
vulnerability candidates instead of confirmed vulnerabilities such
as logging data leakage, which cannot provide insights for app
developers to patch the corresponding vulnerabilities. (3) Last but
not least, a relatively complete vulnerability taxonomy is missing,
which would introduce many false negatives. All in all, existing
tools are not precise with low detection accuracy (high false positive
and false negative rate).

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen et al.

Data Storage
Security

Data Encryption
Security

Data Access Security

Security
Vulnerability

Report

Security Vulnerability Taxonomy

Android app

Sensitive Data
Tagging

Taint Analysis Reachability Analysis

Pattern-based
Analysis

Function
Identification

SCA

Communication
Authentication Security

Configuration Security

AUSERA

Keywords of
sensitive data

Newly-defined
Source & Sink

Figure 1: Overview of AUSERA.

1 // Get sensitive data from EditTexts
2 public String getregisterSms() {
3 StringBuilder m = new StringBuilder("REG");
4 m.append(getPin() + "/");
5 m.append(getFirstName() + "/");
6 m.append(getLastName() + "/");
7 m.append(getAddress() + "/");
8 return m.toString();
9 }
10 // Send the sensitive data via SMS
11 public void execute() {
12 sendSmsMessage(getRegisterSms());
13 }
14 private void sendSmsMessage(String message) {
15 this.smsManager.setMessage(message);
16 this.smsManager.setDestinationAddress("...");
17 SmsHandler.builder().activity(this.activity);
18 smsManager(this.smsManager).build().send();
19 }

Listing 1: Pseudo code that leaks sensitive data by SMS [17].

SharedPreference data leakage. (2) Although the static taint analy-
sis tools such as FlowDroid [13] and IccTA [18] can alleviate the
false positive problem to some extent, they also output hundreds of
vulnerability candidates instead of confirmed vulnerabilities such
as logging data leakage, which cannot provide insights for app
developers to patch the corresponding vulnerabilities. (3) Last but
not least, a relatively complete vulnerability taxonomy is missing,
which would introduce many false negatives. All in all, existing
tools are not precise with low detection accuracy (high false positive
and false negative rate).

To this end, based on our previous work in this research do-
main [16, 17, 19] and the understanding of the international mobile
security standards such as NIST [9], and OWASP [11], we first pro-
pose a relatively complete vulnerability taxonomy, which contains
5 main vulnerability categories and 50 vulnerability types within
Android apps. Secondly, we further extend AUSERA [16] for An-
droid app vulnerability detection and security risk assessment, by
leveraging static program analysis such as data- and control-flow
analysis, sensitive data tagging, etc. To demonstrate the effective-
ness of AUSERA, we construct a new benchmark dataset involving
all these 50 vulnerability types in our proposed vulnerability taxon-
omy. We finally evaluate AUSERA with 4 academic static analysis
tools including AndroBugs [1],MobSF [10],Qark [4], and Super [5].

We conclude our contributions as follows:
• We propose a relatively complete vulnerability taxonomy
of app source code in Android apps, which includes 5 main
categories and 50 vulnerability types.

• Weextend and release an automated security risk assessment
tool for vulnerability detection in Android apps, named
AUSERA,1 which effectively reduces the false positives and
false negatives compared with the existing tools.

2 AUSERA
As shown in Figure 1, AUSERA takes as input each app, and the
keyword set of sensitive data with a formal representation of regular
expression, the newly-defined set of sources and sinks guided by
the proposed vulnerability taxonomy, and ultimately outputs the
set of security vulnerabilities in the app under test, the damage,
potential attacks, and patch methods.

2.1 Security Vulnerability Taxonomy
We previously proposed a vulnerability taxonomy specific for bank-
ing apps [16]. However, in this paper, the taxonomy of app vul-
nerabilities is more general for all types of Android apps in the
wild. Therefore, one of the most important criteria is to include as
many vulnerability types as possible. To do this, we propose the
taxonomy according to the following criteria. (1) We keep all of
the summarized vulnerability types for the banking apps. (2) We
take almost all the vulnerability types implemented in the open-
source tools such as AndroBugs and MobSF into the taxonomy.
(3) We refer to the international mobile security standards such as
NIST [9]. (4) We also integrate the industrial best practice defined
in OWASP and security vulnerability database such as CVE [8] and
weakness database such as CWE [7]. (5) Last but not least, we take
the authors’ prior knowledge in this research domain into account
to make the taxonomy more complete and accurate. Finally, as
shown in Table 1, we conclude 5 vulnerability categories, namely
(sensitive) data storage security (contains 8 vulnerability types), data
encryption security (includes 9 vulnerability types), data access se-
curity involving 19 types, communication authentication security
(has 9 vulnerability types), and configuration security (accounts for
5 types), respectively. There are 50 vulnerability types in total.

1https://github.com/tjusenchen/AUSERA

To this end, based on our previous work in this research do-
main [16, 17, 19] and the understanding of the international mobile
security standards such as NIST [9], and OWASP [11], we first pro-
pose a relatively complete vulnerability taxonomy, which contains
5 main vulnerability categories and 50 vulnerability types within
Android apps. Secondly, we further extend AUSERA [16] for An-
droid app vulnerability detection and security risk assessment, by
leveraging static program analysis such as data- and control-flow
analysis, sensitive data tagging, etc. To demonstrate the effective-
ness of AUSERA, we construct a new benchmark dataset involving
all these 50 vulnerability types in our proposed vulnerability taxon-
omy. We finally evaluate AUSERA with 4 academic static analysis
tools including AndroBugs [1],MobSF [10],Qark [4], and Super [5].

We conclude our contributions as follows:
• We propose a relatively complete vulnerability taxonomy
of app source code in Android apps, which includes 5 main
categories and 50 vulnerability types.

• We extend and release an automated security risk
assessment tool for vulnerability detection in Android apps,
named AUSERA,1 which effectively reduces the false posi-
tives and false negatives compared with the existing tools.

2 AUSERA
As shown in Figure 1, AUSERA takes as input each app, and the
keyword set of sensitive data with a formal representation of regular

1https://github.com/tjusenchen/AUSERA

expression, the newly-defined set of sources and sinks guided by
the proposed vulnerability taxonomy, and ultimately outputs the
set of security vulnerabilities in the app under test, the damage,
potential attacks, and patch methods.

2.1 Security Vulnerability Taxonomy
We previously proposed a vulnerability taxonomy specific for bank-
ing apps [16]. However, in this paper, the taxonomy of app vul-
nerabilities is more general for all types of Android apps in the
wild. Therefore, one of the most important criteria is to include as
many vulnerability types as possible. To do this, we propose the
taxonomy according to the following criteria. (1) We keep all of
the summarized vulnerability types for the banking apps. (2) We
take almost all the vulnerability types implemented in the open-
source tools such as AndroBugs and MobSF into the taxonomy.
(3) We refer to the international mobile security standards such as
NIST [9]. (4) We also integrate the industrial best practice defined
in OWASP and security vulnerability database such as CVE [8] and
weakness database such as CWE [7]. (5) Last but not least, we take
the authors’ prior knowledge in this research domain into account
to make the taxonomy more complete and accurate. Finally, as
shown in Table 1, we conclude 5 vulnerability categories, namely
(sensitive) data storage security (contains 8 vulnerability types), data
encryption security (includes 9 vulnerability types), data access se-
curity involving 19 types, communication authentication security
(has 9 vulnerability types), and configuration security (accounts for
5 types), respectively. There are 50 vulnerability types in total.

To the best of our knowledge, this is the first work to provide a
relatively systematic and complete taxonomy of security vulnera-
bilities for Android apps.

2.2 Used Techniques in AUSERA
For the techniques used in AUSERA, we also integrate the basic
design from [16]. The main updates are as follows. (1) We first
update the keywords of sensitive data to make it more general
for common apps instead of only for one type of those apps. Note
that, the set also can be customized by users. For example, if the
tool is used to scan healthcare apps, they can add more profes-
sional health keywords to represent sensitive data for their scan-
ning tasks. (2) We update the set of sinks to map more vulner-
ability types introduced in the category of data storage security
such as android.database.sqlite.SQLiteDatabase: void execSQL for
SQLite leakage. The defined sinks can be found in the file of Source-
sAndSinks in the configuration folder. (3) For the phase of function
identification, we add more APIs to help locate the functional imple-
mentations. Note that, the vulnerable functions are not identified
as a true vulnerable case until they have been verified for the reach-
ability analysis. For example, if the invalid server verification (do
nothing in the verification function body) is not triggered by any
other methods or classes, it is considered no threat to mobile users.
Reachability analysis can reduce false positives caused by dead
code in apps. (4) We also expand the pattern-based analysis by
considering the preconditions for vulnerability occurrence. For
example, some vulnerable code is only triggered under a specific
SDK version range or with exported components. (5) Apart from
the vulnerability introduced by the source code, the vulnerable

https://github.com/tjusenchen/AUSERA

AUSERA: Automated Security Vulnerability Detection for
Android Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Taxonomy of security vulnerabilities in Android apps and detection results on the ground-truth dataset.

AUSERA: Automated Security Vulnerability Detection for
Android Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Taxonomy of security vulnerabilities in Android apps and detection results on the ground-truth dataset.

Category Taxonomy (50 types) AUSERA
(50 types)

AndroBugs
(20 types)

MobSF
(20 types)

Qark
(11 types)

Super
(15 types)

(Sensitive)
Data
Storage
Security
(8 types)

Use SharedPreference
Use SQLite
Use webview.db
Use LogCat G# G# G#
Use External Storage G# G# G#
Use Internal Storage
Use Text files
Use TempFile G#

Data
Encryption
Security
(9 types)

Use insecure AES encryption
Use insecure RSA encryption
Use insecure SecureRandom
Use insecure MD5 hash function
Use insecure SHA-1 hash function
Use insecure Base64 encryption
Use insecure Blowfish encryption
Use insecure DES encryption
Use hard-coded encryption key G# G#

Data Access
Security by
Vulnerable
Function
(19 types)

Use dynamically registered Receiver
Use Implicit Intent
Use Intent-filter causing component exported
Use empty pending intent
Use exported Activity
Use exported Service
Use exported Content Provider
Use exported Broadcast Receiver
Use WebView JavaScript Interface G# G# G#
Use WebView setAllowFileAccess G# G#
Use WebView setPluginState
Use getRuntime#exec
Use DexClassLoader
Use loadLibary (.so binary files)
Use vulnerable binary libraries
(supported by Scantist [12])

Use vulnerable third-party libraries
(supported by ATVHunter [19])

SQL injection attack
Fragment injection attack G#
Content provider file traversal attack (openFile)

Communication
Authentication
Security
(9 types)

Use SMS transmission with sensitive data
Use HTTP protocol
Use expired certificates
Use certificate with SHA-1 or MD5
Use invalid certificate authentication
(Allow all hostname request)

Use invalid hostname verification
Use invalid server verification
Use invalid certificate authentication in WebView
Use insecure network ports

Configuration
Security
(5 types)

Allow UI screenshots G#
Allow Backup in Manifest
Allow Debug in Manifest
Config MODE_WORLD_READABLE
Config MODE_WORLD_WRITABLE

 : Can detect the corresponding vulnerability type G#: Can detect but would introduce false positives

ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen et al.

Data Storage
Security

Data Encryption
Security

Data Access Security

Security
Vulnerability

Report

Security Vulnerability Taxonomy

Android app

Sensitive Data
Tagging

Taint Analysis Reachability Analysis

Pattern-based
Analysis

Function
Identification

SCA

Communication
Authentication Security

Configuration Security

AUSERA

Keywords of
sensitive data

Newly-defined
Source & Sink

Figure 1: Overview of AUSERA.ASE ’22, October 10–14, 2022, Rochester, MI, USA Chen et al.

1 Public Id: BUG-A003-0001; Type: Security Bug; Risk Level: High; Risk Score: 8;
2 Sub Type: SMS data leakage; // App vulnerability type
3 Description: The app sends an SMS attached with the sensitive data (in plaintext) to authenticate that user, but the data is stored in the SMS

outbox unexpectedly. If an adversary registers a content observer to the SMS outbox on the mobile device with some permissions, the user's

sensitive data can be easily intercepted by the adversary who impersonates that user to manipulate her legitimate banking account.
↩→
↩→

4 Location: Found a flow to sink virtualinvoke $r10.<android.telephony.SmsManager: void sendTextMessage(), from the following sources: $r5 =
virtualinvoke $r4.<android.widget.EditText: android.text.Editable getText()>() (in
<com.globe.gcash.android.activity.transaction.RegistrationTransactionActivity: void doNext()>)

↩→
↩→

5 => RegistrationTransactionActivity;doNext();$r4;$r5 // Activity, Method, Variables logging
6 ==> pin;firstName;lastName;addr // Sensitive data tagging
7 Patch Method: Avoid sending sensitive data via SMS and store the sensitive data in the SMS outbox accordingly.

Listing 2: An example of a security vulnerability report generated by AUSERA.

To the best of our knowledge, this is the first work to provide a
relatively systematic and complete taxonomy of security vulnera-
bilities for Android apps.

2.2 Used Techniques in AUSERA
For the techniques used in AUSERA, we also integrate the basic
design from [16]. The main updates are as follows. (1) We first
update the keywords of sensitive data to make it more general
for common apps instead of only for one type of those apps. Note
that, the set also can be customized by users. For example, if the
tool is used to scan healthcare apps, they can add more profes-
sional health keywords to represent sensitive data for their scan-
ning tasks. (2) We update the set of sinks to map more vulner-
ability types introduced in the category of data storage security
such as android.database.sqlite.SQLiteDatabase: void execSQL for
SQLite leakage. The defined sinks can be found in the file of Source-
sAndSinks in the configuration folder. (3) For the phase of function
identification, we add more APIs to help locate the functional imple-
mentations. Note that, the vulnerable functions are not identified
as a true vulnerable case until they have been verified for the reach-
ability analysis. For example, if the invalid server verification (do
nothing in the verification function body) is not triggered by any
other methods or classes, it is considered no threat to mobile users.
Reachability analysis can reduce false positives caused by dead
code in apps. (4) We also expand the pattern-based analysis by
considering the preconditions for vulnerability occurrence. For
example, some vulnerable code is only triggered under a specific
SDK version range or with exported components. (5) Apart from
the vulnerability introduced by the source code, the vulnerable
third-party libraries also cause security threats for users, which are
likely to be inadvertently introduced. Therefore, we also integrate
ATVHunter [19] to involve the ability of binary SCA for apps. More
technique details can be found in [16].

As shown in Listing 2, the final report is a JSON file includ-
ing basic attributes such as app name, version name, hash value,
and vulnerability details. For each detected vulnerability, we have 8
fields (i.e., Public Id, Type, Sub Type, Risk Level, Risk Score, Descrip-
tion, Location, and Patch Method). Currently, we provide English
and Chinese versions for users.

3 EVALUATION
To demonstrate the effectiveness of AUSERA, we select 4 open-
source and representative tools (i.e., AndroBugs [1], MobSF [10],

Qark [4], and Super [5]) to compare the detection results. We
use their latest versions on GitHub and conduct the evaluation
on Ubuntu 21.04 with 64G memory and Intel@Core i9-100900
CPU@2.80GHz × 20.

3.1 Ground-truth Dataset
Due to the lack of an available benchmark dataset of the vulnera-
bility taxonomy, we first present a ground-truth dataset including
all 50 types of vulnerabilities summarized in our taxonomy. We
construct the ground-truth dataset based on the following criteria.
(1) We first consider the existing benchmark apps as part of the
ground-truth dataset, which includes two benchmark apps (i.e.,
Diva app [2] and MSTG app [6]). DIVA (Damn insecure and vul-
nerable App) is an app intentionally designed to be insecure with
727 stars. Diva app contains many representative data leakage and
data access vulnerabilities. All these vulnerabilities are manually
injected into one app. Similarly, the MSTG app [6] is used as an
example to demonstrate different vulnerabilities explained in the
OWASP Mobile Security Testing Guide. (2) These two benchmark
apps cannot cover all vulnerabilities in taxonomy, therefore, we
use another 4 apps in our previous studies [16, 17]. These four apps
are all banking apps, and the vulnerabilities within these apps have
been patched by developers according to our reporting in the latest
versions. Therefore, the disclosure will not cause damage in the
real world. We also release these 4 apps on the GitHub repository
(https://github.com/tjusenchen/AUSERA).

3.2 Evaluation Result
The evaluation result is shown in Table 1. Compared with the
existing 4 tools, AUSERA obtains the best performance. Specifically,
on the one hand, owing to the sensitive data tagging and reachability
analysis, AUSERA significantly reduces the false positives, which
has been validated in [16]. On the other hand, owing to the proposed
taxonomy, compared with other tools, the result of AUSERA is more
complete with low false negatives.

Compared with the vulnerability types, AUSERA achieves a more
complete result with all 50 vulnerability types. On the contrary,
AndroBugs, MobSF, Qark, and Super support 20 types, 20 types,
11 types, and 15 types, respectively. Meanwhile, even for the sup-
port vulnerability types, due to the technical limitations, they will
inevitably introduce false positives. For example, sensitive data
disclosure through LogCat is always detected byMobSF, Qark, and
Super as shown in Table 1, but they just match the following APIs

third-party libraries also cause security threats for users, which are
likely to be inadvertently introduced. Therefore, we also integrate
ATVHunter [19] to involve the ability of binary SCA for apps. More
technique details can be found in [16].

As shown in Listing 2,the final report is a JSON file including
basic attributes such as app name, version name, hash value, and vul-
nerability details. For each detected vulnerability, we have 8 fields
(i.e., Public Id, Type, Sub Type, Risk Level, Risk Score, Description,
Location, and Patch Method). Currently, we provide English and
Chinese versions for users.

3 EVALUATION
To demonstrate the effectiveness of AUSERA, we select 4 open-
source and representative tools (i.e., AndroBugs [1], MobSF [10],
Qark [4], and Super [5]) to compare the detection results. We
use their latest versions on GitHub and conduct the evaluation
on Ubuntu 21.04 with 64G memory and Intel@Core i9-100900
CPU@2.80GHz × 20.

3.1 Ground-truth Dataset
Due to the lack of an available benchmark dataset of the vulnera-
bility taxonomy, we first present a ground-truth dataset including
all 50 types of vulnerabilities summarized in our taxonomy. We
construct the ground-truth dataset based on the following criteria.
(1) We first consider the existing benchmark apps as part of the
ground-truth dataset, which includes two benchmark apps (i.e.,
Diva app [2] and MSTG app [6]). DIVA (Damn insecure and vul-
nerable App) is an app intentionally designed to be insecure with

727 stars. Diva app contains many representative data leakage and
data access vulnerabilities. All these vulnerabilities are manually
injected into one app. Similarly, the MSTG app [6] is used as an
example to demonstrate different vulnerabilities explained in the
OWASP Mobile Security Testing Guide. (2) These two benchmark
apps cannot cover all vulnerabilities in taxonomy, therefore, we
use another 4 apps in our previous studies [16, 17]. These four apps
are all banking apps, and the vulnerabilities within these apps have
been patched by developers according to our reporting in the latest
versions. Therefore, the disclosure will not cause damage in the
real world. We also release these 4 apps on the GitHub repository
(https://github.com/tjusenchen/AUSERA).

3.2 Evaluation Result
The evaluation result is shown in Table 1. Compared with the
existing 4 tools, AUSERA obtains the best performance. Specifically,
on the one hand, owing to the sensitive data tagging and reachability
analysis, AUSERA significantly reduces the false positives, which
has been validated in [16]. On the other hand, owing to the proposed
taxonomy, compared with other tools, the result of AUSERA is more
complete with low false negatives.

Compared with the vulnerability types, AUSERA achieves a more
complete result with all 50 vulnerability types. On the contrary,
AndroBugs, MobSF, Qark, and Super support 20 types, 20 types,
11 types, and 15 types, respectively. Meanwhile, even for the sup-
port vulnerability types, due to the technical limitations, they will
inevitably introduce false positives. For example, sensitive data
disclosure through LogCat is always detected byMobSF, Qark, and
Super as shown in Table 1, but they just match the following APIs

AUSERA: Automated Security Vulnerability Detection for
Android Apps ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 2: Online scanning service provided by AUSERA.

if used (e.g., Log.e(), Log.d(), and Log.v()). There is no doubt that it
has incurred plenty of false positives. If the data are not sensitive,
such as “menu_title,” it is very normal for developers to log or write
messages to understand the state of their apps. The risk is that some
credentials (e.g., PIN code and password) are also leaked by logging
outputs. Another example is the vulnerability of using the Web-
View JavaScript Interface, which is supported by AndroBugs, Qark,
and Super. However, they only check the implementation status
of the API addJavascriptInterface(), they ignore the vulnerability
only occurs when the SDK version is lower than 4.2. Similarly, for
the Fragment injection vulnerability, only when the component is
exported by default, the vulnerable Fragment code inherited from
PreferenceActivity causes a real vulnerability. However, AndroBugs
ignores checking the precondition causing false positives.

4 CONCLUSION
In this paper, we proposed a security vulnerability taxonomy for
Android apps, which includes 5 categories and 50 vulnerability
types, based on which we implemented and released AUSERA to
automatically detect vulnerability in Android apps, achieving an
accurate result compared with existing tools. Finally, we highlight
that the set of sensitive data and vulnerability types can be further
expanded according to the detection scenarios for app developers
and security analysts.

Through cooperation with a leading security company from
Singapore, named Scantist [12], AUSERA is also in the process of
product development to provide security scanning service for users,
as shown in Figure 2.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China (No. 62102284, 62102197).

REFERENCES
[1] 2015. AndroBugs. https://github.com/AndroBugs/AndroBugs_Framework
[2] 2016. DIVA App. https://github.com/payatu/diva-android
[3] 2017. JAADAS. https://github.com/flankerhqd/JAADAS
[4] 2018. Qark. https://github.com/linkedin/qark
[5] 2018. Super. https://github.com/SUPERAndroidAnalyzer/super
[6] 2020. MSTG App. https://github.com/OWASP/MSTG-Hacking-Playground
[7] 2022. Common Weakness Enumeration: CWE. https://cwe.mitre.org/
[8] 2022. CVE. https://cve.mitre.org/
[9] 2022. Mobile NIST. https://www.nist.gov/mobile
[10] 2022. MobSF. https://github.com/MobSF/Mobile-Security-Framework-MobSF
[11] 2022. OWASP. https://owasp.org/
[12] 2022. Scantist Pte. Ltd. https://scantist.io/
[13] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[14] Sen Chen, Lingling Fan, Chunyang Chen, and Yang Liu. 2022. Automatically
Distilling Storyboard with Rich Features for Android Apps. IEEE Transactions on
Software Engineering (2022).

[15] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 596–607.

[16] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of
global Android banking apps. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 1310–1322.

[17] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and
Lihua Xu. 2018. Are mobile banking apps secure? what can be improved?. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 797–802.

[18] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in Android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280–291.

[19] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and
Yang Liu. 2021. ATVhunter: Reliable Version Detection of Third-party Libraries
for Vulnerability Identification in Android Applications. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1695–1707.

[20] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei
Xu, Xiapu Luo, and Yang Liu. 2020. Automated third-party library detection for
Android applications: Are we there yet?. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 919–930.

https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/payatu/diva-android
https://github.com/flankerhqd/JAADAS
https://github.com/linkedin/qark
https://github.com/SUPERAndroidAnalyzer/super
https://github.com/OWASP/MSTG-Hacking-Playground
https://cwe.mitre.org/
https://cve.mitre.org/
https://www.nist.gov/mobile
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://owasp.org/
https://scantist.io/

	Abstract
	1 Introduction
	2 AUSERA
	2.1 Security Vulnerability Taxonomy
	2.2 Used Techniques in AUSERA

	3 Evaluation
	3.1 Ground-truth Dataset
	3.2 Evaluation Result

	4 Conclusion
	Acknowledgments
	References

